Developing tourism demand forecasting models using machine learning techniques with trend, seasonal, and cyclic components

نویسنده

  • S. Cankurt
چکیده

This paper proposes the deterministic generation of auxiliary variables, which outline the seasonal, cyclic and trend components of the time series associated with tourism demand for the machine learning models. To test the contribution of the deterministically generated auxiliary variables, we have employed multilayer perceptron (MLP) regression, and support vector regression (SVR) models, which are the well-known stateofart machine learning models. These models are used to make multivariate tourism forecasting for Turkey respected to two data sets: raw data set and data set with deterministically generated auxiliary variables. The forecasting performances are compared regards to these two data sets. In terms of relative absolute error (RAE) and root relative squared error (RRSE) measurements, the proposed machine learning models have achieved significantly better forecasting accuracy when the auxiliary variables have been employed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of seasonality treatment on the forecasting performance of tourism demand models

This study provides a comprehensive comparison of the performance of the commonly used econometric and time-series models in forecasting seasonal tourism demand. The empirical study is carried out based on the demand for outbound leisure tourism by UK residents to seven destination countries: Australia, Canada, France, Greece, Italy, Spain and the USA. In the modelling exercise, the seasonality...

متن کامل

Seasonality in Tourism and Forecasting Foreign Tourist Arrivals in India

In the present age of globalization, technology-revolution and sustainable development, the presence of seasonality in tourist arrivals is considered as a key policy issue that affects the global tourism industry by creating instability in the demand and revenues. The seasonal component in a time-series distorts the prediction attempts for policy-making. In this context, it is quintessential to...

متن کامل

Statistical Modeling and Prediction for Tourism Economy Using Dendritic Neural Network

With the impact of global internationalization, tourism economy has also been a rapid development. The increasing interest aroused by more advanced forecasting methods leads us to innovate forecasting methods. In this paper, the seasonal trend autoregressive integrated moving averages with dendritic neural network model (SA-D model) is proposed to perform the tourism demand forecasting. First, ...

متن کامل

Machine learning algorithms in air quality modeling

Modern studies in the field of environment science and engineering show that deterministic models struggle to capture the relationship between the concentration of atmospheric pollutants and their emission sources. The recent advances in statistical modeling based on machine learning approaches have emerged as solution to tackle these issues. It is a fact that, input variable type largely affec...

متن کامل

Cyclic electric load forecasting by seasonal SVR with chaotic genetic algorithm

Application of support vector regression (SVR) with chaotic sequence and evolutionary algorithms not only could improve forecasting accuracy performance, but also could effectively avoid converging prematurely (i.e., trapping into a local optimum). However, the tendency of electric load sometimes reveals cyclic changes (such as hourly peak in a working day, weekly peak in a business week, and m...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015